2022
Proceedings Articles
1.
Peña-Pérez, Nuria; Eden, Jonathan; Burdet, Etienne; Farkhatdinov, Ildar; Takagi, Atsushi
Lateralization of Impedance Control in Dynamic Versus Static Bimanual Tasks Proceedings Article
In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 785–789, 2022, (ISSN: 2694-0604).
Abstract | Links | BibTeX | Tags: Biology, Haptic interfaces, Impedance, Resource management, Task analysis, Torque, Wrist
@inproceedings{perez_lateralization_2022,
title = {Lateralization of Impedance Control in Dynamic Versus Static Bimanual Tasks},
author = {Nuria Peña-Pérez and Jonathan Eden and Etienne Burdet and Ildar Farkhatdinov and Atsushi Takagi},
doi = {10.1109/EMBC48229.2022.9871013},
year = {2022},
date = {2022-07-01},
urldate = {2022-07-01},
booktitle = {2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)},
pages = {785–789},
abstract = {In activities of daily living that require bimanual coordination, humans often assign a role to each hand. How do task requirements affect this role assignment? To address this question, we investigated how healthy right-handed participants bimanually manipulated a static or dynamic virtual object using wrist flexion/extension while receiving haptic feedback through the interacting object's torque. On selected trials, the object shook strongly to destabilize the bimanual grip. Our results show that participants reacted to the shaking by increasing their wrist co-contraction. Unlike in previous work, handedness was not the determining factor in choosing which wrist to co-contract to stabilize the object. However, each participant preferred to co-contract one hand over the other, a choice that was consistent for both the static and dynamic objects. While role allocation did not seem to be affected by task requirements, it may have resulted in different motor behaviours as indicated by the changes in the object torque. Further investigation is needed to elucidate the factors that determine the preference in stabilizing with either the dominant or non-dominant hand.},
note = {ISSN: 2694-0604},
keywords = {Biology, Haptic interfaces, Impedance, Resource management, Task analysis, Torque, Wrist},
pubstate = {published},
tppubtype = {inproceedings}
}
In activities of daily living that require bimanual coordination, humans often assign a role to each hand. How do task requirements affect this role assignment? To address this question, we investigated how healthy right-handed participants bimanually manipulated a static or dynamic virtual object using wrist flexion/extension while receiving haptic feedback through the interacting object's torque. On selected trials, the object shook strongly to destabilize the bimanual grip. Our results show that participants reacted to the shaking by increasing their wrist co-contraction. Unlike in previous work, handedness was not the determining factor in choosing which wrist to co-contract to stabilize the object. However, each participant preferred to co-contract one hand over the other, a choice that was consistent for both the static and dynamic objects. While role allocation did not seem to be affected by task requirements, it may have resulted in different motor behaviours as indicated by the changes in the object torque. Further investigation is needed to elucidate the factors that determine the preference in stabilizing with either the dominant or non-dominant hand.